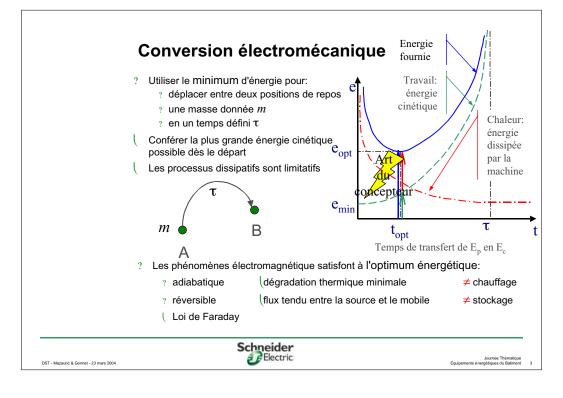


Optimisation des canalisations électriques et des armoires de distribution


Vincent Mazauric Jean-Paul Gonnet Direction Scientifique et Technique

Introduction

- ? Objectifs:
 - ? Améliorer l'efficacité énergétique des équipements:
 - global et durable
 - ? Anticiper l'évolution du marché des organes de distribution:
 - marketing stratégique
 - ? Accompagner le développement de services:
 - accroître le ROEExemple des Data-Centers

- ? Plan:
 - courant alternatif
 - ? Distribuer:
 - surconsommation
 - ? Optimiser:
 - méthode PEEC
 - forme
 - agencement
 - Enjeux:
 - énergétique
 - Analyse du cycle de vie
 - ? Perspectives

- ? Convertir, c'est arbitrer entre:
 - ? dissipation thermique
 - ? travail fourni

Méthode des éléments finis $P_{opt} = \frac{e_{opt}(\tau)}{\tau}$ $P_{fournie} = \frac{W}{\tau}$

- ? Produire, c'est optimiser $P_{\rm fournie}$:
 - sous contrainte de coût (fabrication, énergie consommée...)
- ? Concevoir, c'est rechercher $\tau_{\mbox{\tiny opt}}$

- ? Distribuer, c'est minimiser les puissances dissipées dans les conducteurs:
 - ? DC: fonction paire du courant
 - effet Joule
 - ? AC: répartition inhomogène des courants
 - effet de peau
 - effet de proximité

- ? Localiser
- ? Paramétrer en fonction de l'agencement et de la forme

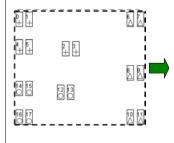
les pertes par effet Joule

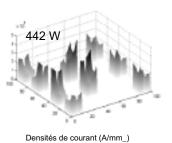
Partial Element Electrical Circuit



? Jeu de barres horizontaux
? Alimentation en énergie

? Jeu de barres verticaux? Répartition de l'énergie


DST - Mazauric & Gonnet - 23 mars 2004


Journee Thématique

Jeu de barres horizontal

- ? Effet de proximité prépondérant
 - ? Optimisation d 'agencement

Beflet de proximité

Beflet de proximité

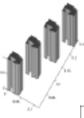
Beflet de peau

Continu (min. théorique)

0.68

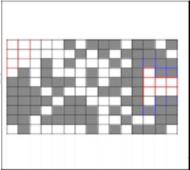
0.4

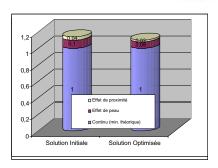
0.23


Solution Initiale

Solution Optimisée

- ? Méthode PEEC + Optimisation
 - ? Gain de 23% sur les pertes à cuivre constant




Schneider Electric

Jeu de barres vertical

- ? Effet prépondérant: effet de peau
 - Optimisation de forme

- ? Méthode PEEC + Algorithmes Génétiques
 - ? Gain de 10 à 15% sur les pertes à cuivre constant

Journee Thématique Equipements é nergétiques du Batiment

DST - Mazauric & Gonnet - 23 mars 2004

Enjeux d'utilisation

? Marché

– Marché Schneider Electric ⇒ 500 km/an

Part Schneider Electric ⇒ 10% du marché mondial

? Le volume de conducteurs ⇒ **5000 km/an**

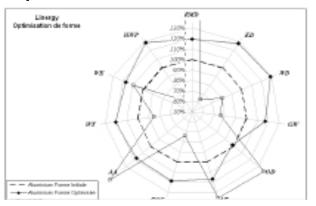
? Consommation moyenne \Rightarrow 178 W / m en moyenne

? Énergie consommée

? Durée de vie ⇒ 15 ans
 ? Facteur d'utilisation ⇒ 10%

- fonctionnement moyenné à 1/3 courant nominal 100% du temps

? Impact énergétique


? L'énergie consommée par l'ensemble des conducteurs installés sur

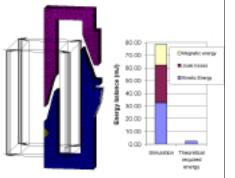
un an est de

11.68 TW.h = 2.9 MTeP

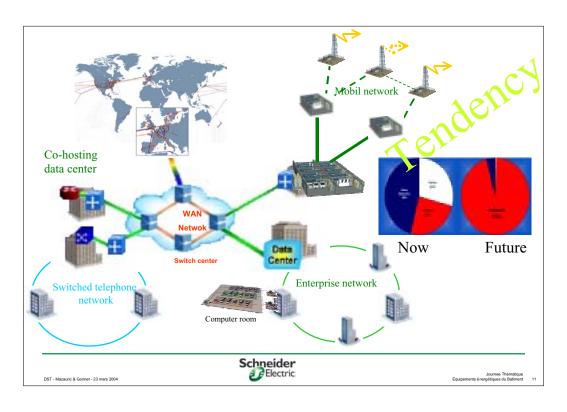
= 1,7 RNSE (=800MW)

Optimisation

- Analyse plus fine:
 - ? Outil = EIME
 - Environmental Information and Management Explorer
 - Scénarios d'optimisation

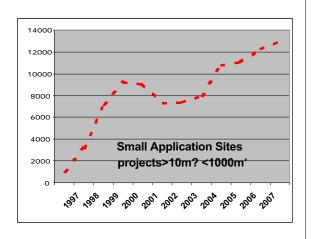


DST - Mazauric & Gonnet - 23 mars 2004

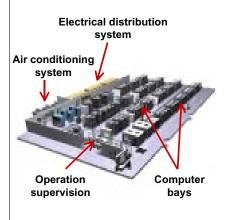

Perspectives

- Organes de distribution:
 - considérer les enveloppes:
 - blindages
 - réaction d'induit
 - affiner l'optimisation:
 - lieu de fabrication
 - lieu d'utilisation
 - facteur de marche
 - pic de consommation
 - ? élargir le marché accessible:
 - canalisations vs cables levier

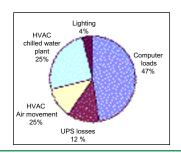
? Généraliser la méthode... à la conversion électromécanique



Tendances


Large sites >2000m_	WW Qt/year
Medium sites	1500
Small sites >10m_ & <200m_	10000
Ultra Small sites <10m_	130 000

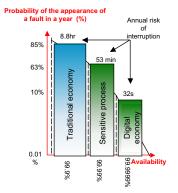
Puissance de l'ordre de 1MVA/site


Décomposition des consommations

Data Center

DST - Mazauric & Gonnet - 23 mars 2004

- Ordinateurs (serveurs, mainframe...)
- ? Communications internes ultra-rapides
- ? interface réseau
- ? Sécurité, éclairage...
- ? Alimentations sécurisées (UPS...)
- Air conditionné


Schneider Electric DST - Mazauric & Gonnet - 23 mars 2004

Journee Thématique Equipements énergétiques du Batiment

Journee Thématique Equipements é nergétiques du Batiment

Equipements MV & LV MV panels and MV/LV transformers LV power distribution panels Power and lighting busways. Active harmonic filtering and compensation Schneider Electric

Enjeu des alimentations sécurisées

Coûts horaires d'indisponibilité:

téléphonie mobile
réservations aériennes
40 000 €
90 000 €

• transactions bancaires 2 500 000 €

• transactions boursières 6 500 000 €

Activité à haute valeur ajoutée

Optimiser l'efficacité énergétique des équipements accroît la marge

DST - Mazauric & Gonnet - 23 mars 2004

Journee Thématique Equipements é nergétiques du Batimen

15